
Short  Name BLTM

Long  Name Branched Lagrangian Transport model

Description

Model Type The BLTM is a general-purpose transport model for unsteady flow in a system 
of one-dimensional channels. It routes any number of constituents. Reaction 
kinetics all are contained in a single subroutine which can be easily modified to 
fit a particular application. The model comes with three reaction kinetics 
subroutines, a simple first order decay of each constituent, a temperature 
model, and the reaction kinetics found in the EPA QUAL2E water quality 
model.

Model Objectives To route chemically interacting dissolved constituents through a series of inter 
connected one-dimensional channels.

Model Structure The BLTM routes any number of interacting dissolved constituents through a 
system of bi-directional, one-dimensional open channels. Flow hydraulics must 
be supplied externally, normally by a flow model such as the DAFLOW model. 
The convective-diffusion equation is solved using a Lagrangian reference 
frame that minimizes numerical dispersion. It can, therefore, be used to route 
sharp concentration gradients such as occur in an estuary.
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Model Paramters The only model parameters are the dispersion coefficient and coefficients 
which define the chemical inter-actions. Each constituent is assumed have one 
zero order reaction and to react with itself and each other routed constituent as 
a first order reaction with an equilibrium concentration at which the reaction 
ceases. This allows the user to define N + 2N2 reaction coefficients, where N 
is the number of constituents being routed, to define the interactions.  Any 
coefficient can be a function of external variables such as solar radiation, 
internal variables such as depth or velocity, or the concentration of any routed 
constituent such as temperature of dissolved oxygen concentration.

Spatial Scale The model has been used to route constituents in rivers of all sizes, as well as 
flume flows.

Temporal Scale Typically the models is operated with a 1-hour time step, but the time step 
depends entirely on the scale of the system. Generally it is operated using a 
daily time step when simulating transport in the Mississippi River and with a 
very short time step when routing the dye concentration just downstream of an 
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instantaneous dye dump into a small stream.

Input Requirements Input data includes the flow hydraulics including the discharge, flow area, top 
width, and tributary inflow at each node for each time step. This information is 
typically supplied to a file by a flow model such as DAFLOW, BRANCH, or 
FEQ. In addition a time series of the concentrations of each routed constituent 
is needed for each inflow point and a time series of any external 
meteorological or other information that may be needed to compute the 
reaction coefficients. The dispersion coefficient is needed for each subreach of 
the model and all reaction coefficients must be defined.

Computer Requirements The BLTM model operates under DOS on any 286, or better, machine. 
Depending on the application, only 640K of memory and 1.5mb of disk space 
are required.

Model Output The BLTM model produces concentration output at user specified locations 
and time intervals. In addition it supplies the parcel number as well as its 
volume, the time it entered the branch and a tabulation of the concentration 
when it entered the branch and the changes that have occurred as a result of 
dispersion, tributary inflow, and each chemical reaction.

Parameter Estimatn Model 
Calibrtn

Calibration generally begins with assuring that the flow velocity provided by the 
transport model is representative of the actual velocity in the river. When using 
the DAFLOW model to supply the hydraulics, the water velocity can be 
adjusted independently of the hydraulic calibration. Once the timing is correct 
the dispersion coefficient is calibrated and finally the reaction rate coefficients 
are adjusted such that the computed and observed time series of 
concentrations agree.

Model Testing Verification The model has been tested against theoretical solutions and numerous sets of 
field data.

Model Sensitivity Model sensitivity depends strongly on the constituent being routed. When 
routing a nearly conservative substance, such as dye, timing (transport 
velocity) is usually the most important variable followed by the dispersion 
coefficient. When the constituents are strongly interactive, the reaction 
coefficients are generally the most significant variables.

Model Reliabiity Model stability and repeatability are excellent.

Model Application The following are references to reports for projects that have used the BLTM 
model.
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